Breast DCE-MRI: lesion classification using dynamic and morphological features by means of a multiple classifier system
نویسندگان
چکیده
Background: In breast magnetic resonance imaging (MRI) analysis for lesion detection and classification, radiologists agree that both morphological and dynamic features are important to differentiate benign from malignant lesions. We propose a multiple classifier system (MCS) to classify breast lesions on dynamic contrast-enhanced MRI (DCE-MRI) combining morphological features and dynamic information. Methods: The proposed MCS combines the results of two classifiers trained with dynamic and morphological features separately. Twenty-six malignant and 22 benign breast lesions, histologically proven, were analysed. The lesions were subdivided into two groups: training set (14 benign and 18 malignant) and testing set (8 benign and 8 malignant). Volumes of interest were extracted both manually and automatically. We initially considered a feature set including 54 morphological features and 98 dynamic features. These were reduced by means of a selection procedure to delete redundant parameters. The performance of each of the two classifiers and of the overall MCS was compared with pathological classification. Results: We obtained an accuracy of 91.7% on the testing set using automatic segmentation and combining the best classifier for morphological features (decision tree) and for dynamic information (Bayesian classifier). With implementation of the MCS, an increase in accuracy of 12.5% and of 31.3% was obtained compared with the accuracy of the Bayesian classifier tested with dynamic features and with that of the decision tree tested with morphological parameters, respectively. Conclusions: An MCS can optimise the accuracy for breast lesion classification combining morphological features and dynamic information.
منابع مشابه
Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملA Multiple Classifier System for Classification of Breast Lesions Using Dynamic and Morphological Features in DCE-MRI
متن کامل
Quantifying heterogeneity of lesion uptake in dynamic contrast enhanced MRI for breast cancer diagnosis
The current study investigates whether texture features extracted from lesion kinetics feature maps can be used for breast cancer diagnosis. Fifty five women with 57 breast lesions (27 benign, 30 malignant) were subjected to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) on 1.5T system. A linear-slope model was fitted pixel-wise to a representative lesion slice time series and f...
متن کاملAutomated localization of breast cancer in DCE-MRI
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly being used for the detection and diagnosis of breast cancer. Compared to mammography, DCE-MRI provides higher sensitivity, however its specificity is variable. Moreover, DCE-MRI data analysis is time consuming and depends on reader expertise. The aim of this work is to propose a novel automated breast cancer localiza...
متن کاملComputer-aided detection of breast lesions in DCE-MRI using region growing based on fuzzy C-means clustering and vesselness filter
A computer-aided detection (CAD) system is introduced in this paper for detection of breast lesions in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The proposed CAD system firstly compensates motion artifacts and segments the breast region. Then, the potential lesion voxels are detected and used as the initial seed points for the seeded region-growing algorithm. A new and rob...
متن کامل